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Some Effects of Quantization on a Noiseless
Phase-Locked Loop

C. A. Greenhall

Communications Systems Research Section

If the VCO of a phase-locked receiver is to be replaced by a digitally programmed
svnthesizer, the phase error signal must be sampled and quantized. We investigate cffects
of quantizing after the loop filter (frequency quantization) or before (phase crror
quantization). Constant Doppler or Doppler rate noiscless inputs are assumed. The main
result gives the phase fitter due to frequency quantization for a Doppler-rate input. By
itsclf. however, frequency quantization is impractical because it makes the loop dvnanic

range too small,

l. Introduction

This article contributes to the effort to develop a partly-
digital receiver for the DSN. In this connection, it has been
suggested that the voltage-controlled oscillator (VCO) of the
carrier tracking loop be replaced by a number-controlled
oscillator (NCO), an example of which is the Digiphase®
Frequency Synthesizer. This synthesizer operates between 40
and 51 Mllz: the frequency decades down to 1076 1z can be
programmed synchronously during a specificd portion of the
10 us clock period. Thus, the filtered, digitized phase error
signal, plus a bias derived from the Doppler prediction, would
be used to program the synthesizer, whose output would be
multiplied up to the locat oscillator frequency (RF — st IF).
Some etfort (Ref. 1), later abandoned, has already been
expended toward development of a third-order tracking loop
with this synthesizer as NCO.

Two advantages of this arrangement are predicted to be:
(1) the phase jitter produced by the synthesizer (and partly
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tracked out by the loop) should be less than that produced by
an analog VCO because the synthesizer phase is controlled by
a wideband loop that tends to track out slow phase variations:
and (2) the synthesizer input, being a digital signal, would
yield directly a convenient estimate of Doppler frequency. It
would be unnecessary to extract Doppler data by mixing
analog signals from the receiver and the exciter, The success of
this approach depends on the truth of (1), for il the
synthesizer exhibits slow, unbounded phase variations, then
the integrated digital Doppler estimate might vary unaccept-
ably from the true local oscillator phase. This question may be
treated in a future article.

In order to program an NCO in the loop. the phase crror
must first be sampled and quantized. One might do this either
before or after the loop filter. This article investigates both
possibilities separately. Assumiptions are (1) lincarized second
order loop, active form of loop filter, with special attention
paid to the 1.1z bandwidth setting of the DSN Block IV
Receiver; (2) strong signal, at least 40 dB above margin: (3) all



noises absent, including oscillator jitter; (4) quadratic phase
input 0=0, +w t +1/2 At?; and (5) zero sampling interval;
time is not quantized.

We show how the loop approaches lock from conditions
close to lock, and we derive the steady state behavior of phase
and frequency.

il. Loop Model

Figure 1 shows a block diagram of the mathematical model.
The phase detector output is p and its quantized version is q.
The unquantized oscillator frequency is ¥ and its quantized
version is 2. The phase detector gain ek, includes the limiter
output signal amplitude of the real receiver (the limiter
suppression factor a is 1 in a strongsignal situation). To
simulate the Block 1V 1.}z loop at S-band with a 40-51 MHz
oscillator, we set 7, = 1.5, 7, =33919s, K, =5 volt/rad,
g=4, K /[2n =96 Hz/volt, and Af=40. The loop gain is
ok =ok g K M =483X 10°s™" and the loop parameter
defined by »

equals 32. This value also holds for the 10 Hz and 100 H2
bandwidth settings. For the 3, 30, and 300 Hz settings, the
value of 7 is 18.55. At threshold, r = 2 for all settings,

The quantizing function Q.;("') rounds x to the nearest odd
multiple of a. The distance between quantizer levels is 2a. The
even multiples of a are *“*decision levels,” To make mathemati-
cal sense out of this model, we assttme a small “dead zone® of
width 2¢ around cach decision level. For example, if x(¢) is a
signal that starts at @ and decreases, then Qn(.\'). initially at a,
flips to -a only when x reaches ~e. Then Q,_(v) does not return
to +a until X returns to +e. Results will be obtained by letting
ctend to 0.

lil. Oscillator Frequency Quantization

Let the phase quantizer be removed from the loop, whose
cquitions are then

ok, g K.
v = —:%l‘ (7:o+f¢d!)

2= 0,

o= 0-2M [zt

The effective quantization interval of the RF radian frequency
w=2nMzis

8w = 4y

In teems of the dimensionless variables

¢ ’—r{:' 9 = rzgwo’ ot = r:.!wo
»* ..AL,G-"' = 3'—‘— :
the equations become
vt =7 (¢‘ +f¢‘ dl') (N
2= 0,0 &)
ot = 00 -far @

At the risk of confusion, we shall drop the asterisks from the
dimensionless variables for a while: when results are stated we
shall make clear what variables we are talking about. Equations
(1) and (3) really mean

Y@y x@,) = r (o(r)- o(r,,)+j o(s) (Is)

[

o)~ or,) = 00)- 0,)- f ) ds

for any r and t. Initial conditions for Eqs. (1)~ (3) are
specified by ¢(r ) and v(r ).

We shall assume that the quantizer @, has a dead area

[-e.€l.

A. Constant Doppler Input

Let 0 = 0, + o, t. where lw, | <r. We show the loop pullin
behavior for sufticiently small &(0) and 3(0). Without loss of
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generality we can assume =€ <»(0) <2r and = is initlally +r.
Fort >0,

6(1) = 0(0) + (wp )1
I s
¥ = y@+r I, =7+ 60 143 (g - )1%}

Let ¢(0) <r - w,,. Then ¥ decreases until it reaches —€ at some
time ¢, . This makes 2 flip to =7. Fort>1¢,

O =01, + (w0, + ) (1 =1,)

y({)=-etr {lwn+r+¢(rl)] (r- I|)+-;—(wo+r)(r- I,)’}

If 3°(0) is small enough, then ¢(r|) is not too negative, so that
we can assume w, + 7+ ¢(r,) > 0. Thus, p* increases, and soon
reaches +¢. Then = flips back to 47, and so on. We see that v
judders back and forth inside the dead zone [-¢, €], and 2 flips
violently between -r and +r. Meanwhile, what happens to-the
phase error ¢7 It satisfies the integral equation

o*fodr“;- C))

For small ¢, we can pretend y = 0 for £ > ¢, . Then the solution
of Eq. () is () = (1) e'171, We could, of course, compute
the additional ¢-disturbance due to the juddering of v.

If c,, > rand ¢(0), y(0) are small, then whether 2(0) is r or
-r. y Noats upward, trying to make w,, - 2 small. Eventually,
the loop reaches a condition in which v = 2&r (k is an integer),
where 2kr is the nearest decision level to w,. and ¢ decays
exponentially to 0. (We ignore the case where w,/fr is an odd
integer.)

We state this result in “real-world™ units: For a constant
Doppler input 0 = 0, + w,t 1o the Srequency-quantized loop.,
the unquantized frequency y eventually sticks at the nearest
decision level 2kAy 1o w,,. the quantized frequency = Jlips
rapidly berween (2k = DAy and (2k + 1) Ay, and the phase
error & decavs to O exponentially with time constan! 7, The
static phase error is 0.

B. Constant Doppler Rate Input

We return to the use of dimensionless variables (unstarred).
Lat0=0,4+w,t+1/2 A2, N> 0. The unquantized loop has a
static phase error (SPE): the steady-state solution of Eqs. (1)

60

and (3), with 2=y, is ¢ = Nr, ¥ = w, + M. We are going to
find a periodic solution of the quantized system: the period is
necessarily 2r/X, the time it takes the Doppler to traverse one
quantization interval. The idea is that for small X\ the
frequency » Is normally stuck at a decision fevel of the
quantizer and the phase error has decayed exponentially to 0.
As (= w, + Ar increases, though, there comes a time when v
can no longer rematn at that level: it must eventually float up
to the next level in order to stay close to 6. During this
Sloating period, ¢ is allowed to wander off. In fact, it exceeds
the nominal SPE. During the subsequent sticking period, when
v is stuck at the next decision level, ¢ again decays
exponentially to 0. The sum of the lengths of the Nloating and
sticking periods is 2r/\.

So, let us assume that at time 0, v is stuck at O (really.

within [-¢, €]). Let ¢(0) = ¢ . For small # >0, while 2 remiins
constant,

6(1) = o, +(w,~ )1 +-'5 e (5

' ] s 1
(@) =r [("’o +o,- :)H?()\ tw, =) ¢ 3 .\r‘]
()
flw,+¢,1<n then the coefficient of 7in Eq. (6) has sign

opposite to 2, so y remains stuck at 0. In order to make the
time origin the start of a floating period, we assume

w,+o, =r. o, S\ (N

o

Then = immediately becomes +r and stays there, For ¢ >0,

o) =90, o”H—I,-N’ &)
! s b
r(y=r [7 (-0 #—(‘- M] Q)]

The floating period ends when v reaches 2r, the next decision
level, where = must choose between r and 3r. This happens at
time 7, the positive solution of

LR T AP Y_a =
Lales-o) -0

Fore=t tuu small and positive, while = is constant,

o, +1) = o=, N, - :)u+—l; e (10)



Y ) =24 o) O * M tr=2lutO ()}

an

where ¢ (7, ) is computed from Eq. (8). Assume that
o(r))- 9, + N, <2r 1)

(The left side equals (\ = ¢, Ye, +1)2 Al 1+ and hence is
positive.) Then the coefrc:ent of v in Eq. (I 1) has opposite
sign to = - 2r. Therefore, » is stuck at 2r, Fort> ¢, ¢ satisfics

o = o(t,)et

and the *“microscopic”
determined from

behavior of the system near ¢ is

ot+u) = ¢(t)+(w, +Xr-2)u+ 7',- ne?

v+ =r {24' {w, o) +xe-2]u

+—'2- A+, + N =200 +—é—>«u’}

where = = 2r £ r, The sticking period ends and a new floating

period begins when w_ + ¢ (r) + M reaches 3r. Comparing with

Eqgs. (5) and (6), we sce that the situation is just like the one at

time O (except that now y = 2r) provided A\e=2r, o(t) = Oy

lh.n is to say, ¢(2r/X) = ¢ . Of course, this makes sense only |f
y S2r/\. Weareled to thc following system of equations:

g>u+~(x o) =2 13)
6 = 0, (1= 1)+ 3\ (19)
Xr
0, = &, exp ( - 7\) (15)

A solution 3L - I is called admissible if

0<g, <A (16)
2 ‘
0<I|<-i‘ a7
0, =0, <= N, (s)

A special case should be exposed first. Equality in Eq. (17)
for a solution is equivalent to equality in Eq. (18), and means
that the sticking period has zero length, Working backwards by
setting ¢, = 2r/Aand ¢, = ¢ . we solve Eq. (14) for ¢, and Eq.
(13) for )\ We find tlm for re 43and A=\, oW hen

’.2 3 172
)\m "—2- [l + (l-.\—r) ] (1,

there is the admissible solution

O ™0 Oy =, ot =N\

For other values of A, Eqs. (13)~ (15) can be solved
numerically by iterating ¢, (Newton's method is used to solve
Eq. (13) for ). Convergence is slow, but Steffensen’s
acceleration method (Ref. 2) yiclds the solution within about
8 decimal places using only 6 iterations of Eqs. (13) - (13).!
For A<r/10 we can take ¢, =0 and solve for 1,0,
immediately. We have not Proved existence or umqucnc« ur
the admissible solution; indeed, some of the results are

. empirical,

Eqs. (13) — (15) were solved for r = 32, 18,55, 10, S.and 2.
and for 1073 r KX<r¥, For A> N\, A given by Eq. (19,
the solution became inadmissible. Evidently, for \ > A, we
enter a situation in which there is no sticking period. We have

not looked at this yet.

For any admissible solution, the time average of ¢(r) over 3
period 2r/X is exactly the SPE N\/r. The maximum of ¢ is 0,
and the minimum is

obtained by minimizing Eq. (8). Thus ¢ does fluctuate about
the nominal SPE of \/r. The peak-to-peak variation

7 -
lo = ol omin

is plotted vs. A/r in Fig. 2 with 7 as a parameter (the variables
are starred). These curves show that I-'o is an insensitive
function of rand N/r. Forr= 32,

max l’o = 1,72

11t one iterates £, instead of 04, then it is not necessary to solve a cubic
equation, Unfortunately, this iteration is violently unstable at the
admissible solution.
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achieved for Nr = 0.6 approximately. Figure 3 sketches ¢{r)
vs. ¢ for r=32, \r=0.5 (the variables are starred). As \
decreases, V, decreases slowly. The width of the ¢-pulse,
however, gets narrow relative to the period 2r/X, so that the
RMS phase jitter decreases faster than the peak-to-peak phase
jitter,

We have actually been working with dimensionless vari-
ables. Here arc some of the results in real-world units,

Let the loop with RF frequency quantization 2w have the
input 0=0_ + w,t + 12 A? wihere the Doppler rate X

satisfics
Aw r 4 \'2 R
0<)\<—-—-72 5 [I+ (l 3’) (20)

The steady-state phase error fluctuates about the static phase
crror
1';)\

— ol
SPE = —; @n

periodically with period 28w/\. The peak-to-peak amplitude
Vo af this fluctuation satisfics

Vo <0.86-1-;3 2Aw (r=32) 22)
)
v, <0.S3—r— Qdw (r = 18.55) (23)
the maximum being achieved when
A= 0652 (4)

2
approximately.

‘Assume a 1-Hz loop with a synthesizer programmed down
to the 10™* Nz decade. Then

28y = 0.001 Hz

2Aw
2z

0.04 11z at S-band

max l'o = 0.0101 rad = 0.58 deg
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achieved when
\ = 0.05 rad/s? = 0.008 1z/s

SPE = 0.2 deg

The maximum Doppler rate and SPE for which the present
analysis is valid is obtained from Eqs. (20) and (21) as

A = 0422 He/s

max

SPE_ = 10.7 deg

ax
The phase jitter Vo is only 0.17 deg. a small ripple on the SPE,

At this point it appears that digitizing the phase error signal
at the oscillator input is not practical. To achieve a 107 12
quantization with a 12.bit A-D converter would mean
loop-controllable oscillator trequency range of only 41,

whereas the Block IV VCO. in narrow mode, has a range of

960 Uz, It is probably necessary to digitize the phase error in
front of the loop filter or even earlier.

IV. Phase Error Quantization
Returning to Fig. 1, we remove the frequency quantizer

and install the phase quantizer. The loop equations are

p=ok 0. q=0,,0

ek,
chr.' (rzq +fq(ll)

v o=

¢ = 0- 2 [dr

The effective quantization interval for ¢ is

h
230 = -;f.ﬁ’ ) R}
d

Appropriate dimensionless variables are now

0 o

* — * -— * =

t =f‘ 0 =_\°. o 3o
eM:,
qQ° = -4 v = -y
Ap Mo



in terms of which the loop equations become

a* = Q,(%). (26)
yr=r (ll" +fa* d!‘) (7
Ot = oc_f".t dt* (28)

As before. we shall drop the asterisks from these variables
during the analysis.

The quantization interval of q is 2. As before, we assume
that Ql has a dead zone of width 2e about each decision level
2k. Implicit in this model is the decision to make 0 a decision
level, not a quantization level. Eq. (27) says that if g jumps by
£2 then v jumps by £2r, If ¢ is a constant, say 2% + 1, on the
interval f¢ . ¢,]. then

-"(’z) -_\'(rl) = r(r2 - rl)(2k+ 1).

Let 0= 0, +w,r+1/2 M, where we now allow A to be 0.
The unquantized loop has a SPE ¢ =)/r. In order for the
quantized phase error ¢ to be A/r in some average sense, it
must happen that ¢ gets stuck at the closest decision level 2k
to Nr, while g jumps between 2k + 1 and 2k - 1, bracketing
AJr. To show how this happens, it is convenient to define some
more variables

he}
]
o
1
|
S
It
=S
1
X

(we shall nor drop the primes from these variables). They
satisty

q' =Q'(¢) (29
o= r(q' +fq'(lr) (30)
o = - f vdr G

.
where*

Q') = 0, (o'+%) 2

r

FBecause of the indefinite integrals, additive constants in Fgs, (30) and
(3 ean be deleted,

is just an offset quantizer whose decision level m lving closest
to the origin satisties

-1<m<1, m = - : (mod 2).

Assume that A/r is not an odd integer. so that m is unique and
-1 <m < 1. We shall show merely that it ¢'(0) - m and +'(0)
are small enough, then @' eventually sticks at m. Without loss
of generality we can assume ¢'(0)>m - e and ¢'(0)Y = m + |
(rather than m - 1). For ¢t > 0.

(@) =0y tr(mt )y 32)
') = ¢'(0)- »'(0)e - —I,—r(m + )t (33)

Let +'(0) 2 0. Then ¢’ decreases, reaching m at time

_ (04 VD

! r(m+1)
where
D = v(0) +2r(m + 1) [6'(0) - m|
(we neglect €). Now, ¢’ flips to m - 1 and 3" flips to

YO +r(mt e - 2= VD -2

D <45t (39

Then ¢ immediately starts to increase again, so ¢ tlips back to
m + 1, and so on. Thus ¢’ is stuck at r1.

If »'(0) < 0 then ¢ initially increases. We can make sure

that ¢', given in Eq. (33). never reaches the next decision level
m + 2 by requiring

D<dr(m+1) (3%)

In fact. Eq. (35Y implies Eq. (3 i r = 2. Then o' reaches m
time 7, as before.

When ¢ sticks at . v starts Mipping between /1) and
VD = 2r. By examining the microscopic behavior of o in the
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2e-dead zone, one can show, using an analysis not given here,
that the upper and lower limits »,, v_ of »' change with time,
and in fact

y,>m+Dry_—>(m-1)r

exponentially with time constant 1. This result, though
intuitively attractive, is on shakier ground than the other
results here because it depends on the detailed behavior of the
quantizer in its dead zones, which, after all, are but mathe.
matical artifices introduced to make sense of the loop
equations.

If Mr happens to be an odd integer, then it appears that ¢’
wanders irresolutely between the two nearest decision points
Nr-Tland Nr+ 1.

Returning through two changes of variables to real-world
units, we state results: Consider the input 0 = 0, +w,t +1/2
N2 1o the loop with detector output quantization, where 0 is
a decision level of the quantizer and 28¢, defined by Eq. (25),
is the cffective phase crror quantization interval, Then the
crror ¢ sticks at the decision level 2kAé that is nearest to the
SPE of rf Nr. The RFE frequency w of the local oscillator flips
rapidly berween the two values

do . r I rag
—+ kA - — ] t— (36)
t 7, r 7,
Thus, the peak-to-peak jitter in w is
o=l 28 Gn
e 23¢. R

Evidently, Eq. (37) is the counterpart of Eq. (22) or (23).

In the 1-Hz loop let the maximum range .*.I\’d of the phase
detector be quantized by an 8-bit A-D converter. Then for
strong signals (a = 1), we have

230 = 277 rad = 0.45 deg..

¥
© = “oo -3 0,
ly BT 6.6 X 1077 Ha.

We have been assuming in this section that the oscillator
frequency v is not quantized. Since an NCO is being used. its
frequency is necessarily quantized. It, however. we make its
quantization 2 Ay small compared to its peak-to-peak jitter
P . then the results of this section still hold. In the 1-1z loop
example, we must assume that the svnthesizer is programmed
at least as far down as the 107* Hz decade: this is feasible
because the signal has been digitized earlier. Then the phase
jitter caused by frequency quantization (Section 1 B) will be
small compared to the phase error quantization 2 do. It the
synthesizer is programmed down only to 10 He. then one
must examine a more complicated model that includes both
frequency and phase error quantization.

V. Conclusions
There is a rough rule-of-thumb relationship

2
~- Aw
e

-
‘an
e
—

Ao x

which holds when either the phase error 0 or the RF
frequency w is quantized. If w is quantized into picces of
width 2. then 22¢ from Eq. (38) gives an upper bound for
the peak-to-peak phase jitter. Conversely, it ¢ is quantized into
pieces of width 23¢ then 23w from Eq. (38) is the
peak-to-peak frequency jitter. In either case, the variable being
quantized tends to stick at a decision level of the quantizer,
which acts as a bang-bang control element in the loop.

It is not practical to digitize the error signal at the input o
the loop oscillator (frequency quantization). because the
oscillator frequency range would be too small. The digitizing
must be done carlier, in which case Eq. (38) still tells us how
fine the programming of the digitallv-controlled oscillator
must be to maintain phase jitter below a certain level.
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DETECTOR PHASE ERROR LOOP
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Fig. 3. Phase error vs. time for a Doppler-rate input to a loop with frequency quantization



